Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.527
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 142-147, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650139

RESUMO

The diagnostic biomarkers associated with ischemic stroke (IS) that may have clinical utility remain elucidated. Thus, the potential functional lncRNAs in IS were explored. The Gene Expression Omnibus database provided the transcriptome profile of IS for download. WGCNA analysis and integrated bioinformatics were used to find genes that were differentially expressed (DEGs). The Starbase database created the lncRNA-based ceRNA network. In order to investigate the molecular mechanism and involved pathways of DEGs in IS, functional enrichment analysis was carried out. Using qRT-PCR, lncRNAs identified as putative IS biomarkers were confirmed to be expressed in a permanent middle cerebral artery occlusion (MCAO) model. Using the annexin V/PI apoptosis test, the amount of apoptosis in oxygen-glucose deprivation (OGD) cells was measured. A total of 1600 common differentially expressed - protein-coding RNA (DE-pcRNAs) and 26 DE-lncRNAs were identified. The results of enrichment analysis indicate that the cytokine may be regulated by common DE-pcRNAs and are vital in the progress of IS. A lncRNAs-mediated ceRNA network including lncRNAs AU020206, Brip1os, F630028O10Rik and 9530082P21Rik was constructed. The expression of these lncRNAs was significantly increased in MCAO model. Knockdown of lncRNA AU020206 inhibited microglia apoptosis in OGD cell model. We constructed a lncRNAs-mediated ceRNA network and found that lncRNA AU020206 inhibited microglia apoptosis in OGD cell model. These findings provided further evidence for the diagnosis and a novel avenue for targeted therapy of IS.


Assuntos
Apoptose , AVC Isquêmico , Microglia , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apoptose/genética , Apoptose/efeitos dos fármacos , AVC Isquêmico/genética , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Técnicas de Silenciamento de Genes , Masculino , Redes Reguladoras de Genes , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Glucose/metabolismo , Glucose/deficiência , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma/genética , Modelos Animais de Doenças
2.
CNS Neurosci Ther ; 30(3): e14697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38544474

RESUMO

AIMS: Neuroinflammation and pyroptosis are key mediators of cerebral ischemia/reperfusion (I/R) injury-induced pathogenic cascades. BRCC3, the human homolog of BRCC36, is implicated in neurological disorders and plays a crucial role in neuroinflammation and pyroptosis. However, its effects and potential mechanisms in cerebral I/R injury in mice are unclear. METHODS: Cellular localization of BRCC3 and the interaction between BRCC3 and NLRP6 were assessed. Middle cerebral artery occlusion/reperfusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were established in mice and HT22 cells, respectively, to simulate cerebral I/R injury in vivo and in vitro. RESULTS: BRCC3 protein expression peaked 24 h after MCAO and OGD/R. BRCC3 knockdown reduced the inflammation and pyroptosis caused by cerebral I/R injury and ameliorated neurological deficits in mice after MCAO. The effects of BRCC3 on inflammation and pyroptosis may be mediated by NLRP6 inflammasome activation. Moreover, both BRCC3 and its N- and C-terminals interacted with NLRP6, and both BRCC3 and its terminals reduced NLRP6 ubiquitination. Additionally, BRCC3 affected the interaction between NLRP6 and ASC, which may be related to inflammasome activation. CONCLUSION: BRCC3 shows promise as a novel target to enhance neurological recovery and attenuate the inflammatory responses and pyroptosis caused by NLRP6 activation in cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Isquemia Encefálica/metabolismo , Enzimas Desubiquitinantes , Infarto da Artéria Cerebral Média/patologia , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Traumatismo por Reperfusão/metabolismo
3.
J Neuroinflammation ; 21(1): 70, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515139

RESUMO

Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Proteína HMGB1 , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Ácido Hipocloroso , Microglia/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Peroxidase/metabolismo , Taurina , Dissulfetos
4.
Stroke ; 55(4): 1075-1085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445502

RESUMO

BACKGROUND: Ischemic stroke is often accompanied by oxidative stress and inflammatory response, both of which work synergistically to exacerbate the disruption of the blood-brain barrier and ischemic brain injury. ALK (anaplastic lymphoma kinase), a cancer-associated receptor tyrosine kinase, was found to play a role in oxidative stress and inflammation. In this study, we investigated the role of ALK inhibition in a murine model of ischemic stroke. METHODS: Focal cerebral ischemia was induced by temporary occlusion of the right middle cerebral artery in mice with a filament. The ALK inhibitor alectinib was administered following the stroke. ALOX15 (arachidonic acid 15-lipoxygenase) was overexpressed by adenovirus injection. The immunohistochemistry, Western blot, oxidative stress, inflammation, blood-brain barrier leakage, infarct volume, and functional outcomes were determined. RESULTS: We found that the expression of ALK was markedly increased in the neurovascular unit after cerebral ischemia. Treatment with the ALK inhibitor alectinib reduced the accumulation of reactive oxygen species, lipid peroxidation, and oxidative DNA, increased the vascular levels of antioxidant enzymes, inactivated the vascular NLRP3 (nucleotide-binding oligomerization domain-like receptor protein 3) inflammasome pathway, and reduced vascular inflammation (ICAM-1 [intercellular adhesion molecule-1] and MCP-1 [monocyte chemoattractant protein-1]) after ischemia. Moreover, alectinib reduced the loss of cerebrovascular integrity and blood-brain barrier damage, consequently decreasing brain infarction and neurological deficits. Furthermore, alectinib reduced stroke-evoked ALOX15 expression, whereas virus-mediated overexpression of ALOX15 abolished alectinib-dependent inhibition of oxidative stress and vascular inflammation, blood-brain barrier protection, and neuroprotection, suggesting the protective effects of alectinib for stroke may involve ALOX15. CONCLUSIONS: Our findings demonstrated that alectinib protects from stroke by regulating ischemic signaling cascades and suggest that ALK may be a novel therapeutic target for ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Quinase do Linfoma Anaplásico/metabolismo , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/patologia , Inflamação/patologia , AVC Isquêmico/complicações , Inibidores de Proteínas Quinases/farmacologia
5.
PLoS One ; 19(3): e0300072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527023

RESUMO

Stroke is a leading cause of death and long-term disability which can cause oxidative damage and inflammation of the neuronal cells. Retinoic acid is an active metabolite of vitamin A that has various beneficial effects including antioxidant and anti-inflammatory effects. In this study, we investigated whether retinoic acid modulates oxidative stress and inflammatory factors in a stroke animal model. A middle cerebral artery occlusion (MCAO) was performed on adult male rats to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the peritoneal cavity for four days before MCAO surgery. The neurobehavioral tests were carried out 24 h after MCAO and cerebral cortex tissues were collected. The cortical damage was assessed by hematoxylin-eosin staining and reactive oxygen species assay. In addition, Western blot and immunohistochemical staining were performed to investigate the activation of glial cells and inflammatory cytokines in MCAO animals. Ionized calcium-binding adapter molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) were used as markers of microglial and astrocyte activation, respectively. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were used as representative pro-inflammatory cytokines. Results showed that MCAO damage caused neurobehavioral defects and histopathological changes in the ischemic region and increased oxidative stress. Retinoic acid treatment reduced these changes caused by MCAO damage. We detected increases in Iba-1 and GFAP in MCAO animals treated with vehicle. However, retinoic acid alleviated increases in Iba-1 and GFAP caused by MCAO damage. Moreover, MCAO increased levels of nuclear factor-κB and pro-inflammatory cytokines, including TNF-α and IL-1ß. Retinoic acid alleviated the expression of these inflammatory proteins. These findings elucidate that retinoic acid regulates microglia and astrocyte activation and modulates pro-inflammatory cytokines. Therefore, this study suggests that retinoic acid exhibits strong antioxidant and anti-inflammatory properties by reducing oxidative stress, inhibiting neuroglia cell activation, and preventing the increase of pro-inflammatory cytokines in a cerebral ischemia.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neuroglia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
6.
Arterioscler Thromb Vasc Biol ; 44(4): 915-929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357819

RESUMO

BACKGROUND: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.


Assuntos
Isquemia Encefálica , Cloridrato de Fingolimode , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Microscopia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Modelos Animais de Doenças
7.
CNS Neurosci Ther ; 30(2): e14551, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421089

RESUMO

BACKGROUND: Post-stroke cognitive impairment (PSCI) is a major source of morbidity and mortality after stroke, but the pathological mechanisms remain unclear. Previous studies have demonstrated that the CX3CR1 receptor plays a crucial role in maintaining an early protective microenvironment after stroke, but whether it persistently influences cognitive dysfunction in the chronic phase requires further investigation. METHODS: Mouse was used to establish a middle cerebral artery occlusion (MCAO)/reperfusion model to study PSCI. Cognitive function was assessed by the Morris water maze (MWM) and the novel object recognition test. Neurogenesis was assessed by immunofluorescence staining with Nestin+ /Ki67+ and DCX+ /BrdU+ double-positive cells. The cerebral damage was monitored by [18 F]-DPA-714 positron emission tomography, Nissel, and TTC staining. The pyroptosis was histologically, biochemically, and electron microscopically examined. RESULTS: Upon MCAO, at 28 to 35 days, CX3CR1 knockout (CX3CR1-/- ) mice had better cognitive behavioral performance both in MWM and novel object recognition test than their CX3CR1+/- counterparts. Upon MCAO, at 7 days, CX3CR1-/- mice increased the numbers of Nestin+ /Ki67+ and DCX+ /BrdU+ cells, and meanwhile it decreased the protein expression of GSDMD, NLRP3 inflammasome subunit, caspase-1, mature IL-1ß/IL-18, and p-P65 in the hippocampus as compared with CX3CR1+/- mice. In addition, CX3CR1-/- mice could reverse infarct volume in the hippocampus region post-stroke. CONCLUSION: Our study demonstrated that CX3CR1 gene deletion was beneficial to PSCI recovery. The mechanism might lie in inhibited pyroptosis and enhanced neurogenesis. CX3CR1 receptor may serve as a therapeutic target for improving the PSCI.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/patologia , Nestina/metabolismo , AVC Isquêmico/patologia , Piroptose , Bromodesoxiuridina/metabolismo , Antígeno Ki-67/metabolismo , Acidente Vascular Cerebral/patologia , Cognição , Infarto da Artéria Cerebral Média/patologia
8.
Neurotoxicology ; 101: 54-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325603

RESUMO

Acute ischemic stroke followed by microglia activation, and the regulation of neuroinflammatory responses after ischemic injury involves microglia polarization. microglia polarization is involved in the regulation of neuroinflammatory responses and ischemic stroke-related brain damage. Thymoquinone (TQ) is an anti-inflammatory agent following ischemic stroke onset. However, the significance of TQ in microglia polarization following acute ischemic stroke is still unclear. We predicted that TQ might have neuroprotective properties by modulating microglia polarization. In this work, we mimicked the clinical signs of acute ischemic stroke using a mouse middle cerebral artery ischemia-reperfusion (I/R) model. It was discovered that TQ treatment decreased I/R-induced infarct volume, cerebral oedema, and promoted neuronal survival, as well as improved the histopathological changes of brain tissue. The sensorimotor function was assessed by the Garica score, foot fault test, and corner test, and it was found that TQ could improve the motor deficits caused by I/R. Secondly, real-time fluorescence quantitative PCR, immuno-fluorescence, ELISA, and western blot were used to detect the expression of M1/M2-specific markers in microglia to explore the role of TQ in the modulation of microglial cell polarization after cerebral ischemia-reperfusion. We found that TQ was able to promote the polarization of microglia with extremely secreted inflammatory factors from M1 type to M2 type. Furthermore, TQ could block the TLR4/NF-κB signaling pathway via Hif-1α activation which subsequently may attenuate microglia differentiation following the cerebral ischemia, establishing a mechanism for the TQ's beneficial effects in the cerebral ischemia-reperfusion model.


Assuntos
Benzoquinonas , Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Microglia , Receptor 4 Toll-Like/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia
9.
Phytomedicine ; 125: 155312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232541

RESUMO

BACKGROUND: Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed. OBJECTIVE: In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury. RESULTS: Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-α and IL-6 in serum and the expression of inflammation-related proteins in brain tissue. CONCLUSION: Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-κB signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.


Assuntos
Aporfinas , Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/patologia , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo
10.
J Ethnopharmacol ; 324: 117712, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38184025

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) is effective for treating hypertension and neuronal damage after cerebral ischemia/reperfusion. However, the anti-neuroinflammatory effect of QDG on injury due to cerebral ischemia/reperfusion is unclear. AIM OF THE STUDY: The objective was to evaluate the effectiveness and action of QDG in treating neuroinflammation resulting from cerebral ischemia/reperfusion-induced injury. MATERIALS AND METHODS: Network pharmacology was used to predict targets and pathways of QDG. An in vivo rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an in vitro model of LPS-stimulated BV-2 cells were established. Magnetic resonance imaging (MRI) was used to quantify the area of cerebral infarction, with morphological changes in the brain being assessed by histology. Immunohistochemistry (IHC) was used to assess levels of the microglial marker IBA-1 in brain tissue. Bioplex analysis was used to measure TNF-α, IL-1ß, IL-6, and MCP-1 in sera and in BV-2 cell culture supernatants. Simultaneously, mRNA levels of these factors were examined using RT-qPCR analysis. Proteins of the TLR4/NF-κB/NLRP3 axis were examined using IHC in vivo and Western blot in vitro, respectively. While NF-κB translocation was assessed using immunofluorescence. RESULTS: The core targets of QDG included TNF, NF-κB1, MAPK1, MAPK3, JUN, and TLR4. QDG suppressed inflammation via modulation of TLR4/NF-κB signaling. In addition, our in vivo experiments using MCAO/R rats demonstrated the therapeutic effect of QDG in reducing brain tissue infarction, improving neurological function, and ameliorating cerebral histopathological damage. Furthermore, QDG reduced the levels of TNF-α, IL-1ß, IL-6, and MCP-1 in both sera from MCAO/R rats and supernatants from LPS-induced BV-2 cells, along with a reduction in the expression of the microglia biomarker IBA-1, as well as that of TLR4, MyD88, p-IKK, p-IκBα, p-P65, and NLRP3 in MCAO/R rats. In LPS-treated BV-2 cells, QDG downregulated the expression of proinflammatory factors and TLR4/NF-κB/NLRP3 signaling-related proteins. Additionally, QDG reduced translocation of NF-κB to the nucleus in both brains of MCAO/R rats and LPS-induced BV-2 cells. Moreover, the combined treatment of the TLR4 inhibitor TAK242 and QDG significantly reduced the levels of p-P65, NLRP3, and IL-6. CONCLUSIONS: QDG significantly suppressed neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 axis in microglia. This suggests potential for QDG in treating ischemia stroke.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Microglia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/patologia , Traumatismo por Reperfusão/metabolismo
11.
ACS Nano ; 18(4): 3260-3275, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227975

RESUMO

The ischemic stroke is a major global health concern, with high mortality and disability rates. Unfortunately, there is a dearth of effective clinical interventions for managing poststroke neuroinflammation and blood-brain barrier (BBB) disruption that are crucial for the brain injury evolving and neurological deficits. By leveraging the pathological progression of an ischemic stroke, we developed an M2 microglia-targeting lipid nanoparticle (termed MLNP) approach that can selectively deliver mRNA encoding phenotype-switching interleukin-10 (mIL-10) to the ischemic brain, creating a beneficial feedback loop that drives microglial polarization toward the protective M2 phenotypes and augments the homing of mIL-10-loaded MLNPs (mIL-10@MLNPs) to ischemic regions. In a transient middle cerebral artery occlusion (MCAO) mouse model of an ischemic stroke, our findings demonstrate that intravenously injected mIL-10@MLNPs induce IL-10 production and enhance the M2 polarization of microglia. The resulting positive loop reinforces the resolution of neuroinflammation, restores the impaired BBB, and prevents neuronal apoptosis after stroke. Using a permanent distal MCAO mouse model of an ischemic stroke, the neuroprotective effects of mIL-10@MLNPs have been further validated by the attenuation of the sensorimotor and cognitive neurological deficits. Furthermore, the developed mRNA-based targeted therapy has great potential to extend the therapeutic time window at least up to 72 h poststroke. This study depicts a simple and versatile LNP platform for selective delivery of mRNA therapeutics to cerebral lesions, showcasing a promising approach for addressing an ischemic stroke and associated brain conditions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/patologia , Microglia/fisiologia , Barreira Hematoencefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia
12.
J Biochem Mol Toxicol ; 38(1): e23623, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229322

RESUMO

Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Netrina-1 , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Netrina-1/metabolismo , Ocludina/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição/metabolismo
13.
Phytomedicine ; 124: 155326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185068

RESUMO

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is a phenomenon that pathological injury of ischemic brain tissue is further aggravated after the restoration of blood supply. The complex pathological mechanism of CIRI has led to the failure of multiple neuroprotective agents in clinical studies. Salvianolic acid A (SAA) is a neuroprotective extract from Salvia miltiorrhiza Bge., with significant pharmacological activities in the treatment of brain injury. However, the neuroprotective mechanisms of SAA remain unclear. PURPOSE: To explore the potential protective effect of SAA on CIRI and its mechanism, and to provide experimental basis for the research of new drugs for CIRI. STUDY DESIGN: A model of transient middle cerebral artery occlusion (tMCAO) in rats was used to simulate clinical CIRI, and the neuroprotective effect of SAA on tMCAO rats was investigated within 14 days after reperfusion. The improvement effects of SAA on cognitive impairment of tMCAO rats were investigated by behavioral tests from days 7-14. Finally, the neuroprotective mechanism of SAA was investigated on day 14. METHODS: The neuroprotective effects and mechanism of SAA were investigated by behavioral tests, HE and TUNEL staining, RNA sequence (RNA-seq) analysis and Western blot in tMCAO rats. RESULTS: The brain protective effects of SAA were achieved by alleviating cerebral infarction, cerebral edema, cerebral atrophy and nerve injury in tMCAO rats. Meanwhile, SAA could effectively improve the cognitive impairment and pathological damage of hippocampal tissue, and inhibit cell apoptosis in tMCAO rats. Besides, SAA could provide neuroprotective effects by up-regulating the expression of Bcl-2, inhibiting the activation of Caspase 3, and regulating PKA/CREB/c-Fos signaling pathway. CONCLUSION: SAA can significantly improve brain injury and cognitive impairment in CIRI rats, and this neuroprotective effect may be achieved through the anti-apoptotic effect and the regulation of PKA/CREB/c-Fos signaling pathway.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Lactatos , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/patologia , Traumatismo por Reperfusão/metabolismo , Apoptose , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Lesões Encefálicas/tratamento farmacológico
14.
Exp Neurol ; 372: 114629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38056583

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress causes neuroinflammation and neuronal apoptosis during ischemic stroke progression. This study has investigated the role of ALKBH5 in ER stress during ischemic stroke progression. METHODS: In vivo and in vitro models of ischemic stroke were established by middle cerebral artery occlusion (MCAO) and OGD/R treatment, respectively. Cerebral infarct size was detected using triphenyltetrazolium chloride staining (TTC), and pathological changes were examined using histological staining. The levels of inflammatory factors were analyzed using Enzyme-linked immunosorbent assay. Cell counting kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. The global m6A level was detected using the commercial kit, and STAT5 mRNA m6A level was determined using methylated RNA binding protein immunoprecipitation (Me-RIP). ALKBH5, YTHDF1, and STAT5 interactions were analyzed using RIP and RNA pull-down assays. RESULTS: ALKBH5 was upregulated in MCAO animals and OGD/R cell models. ALKBH5 knockdown exacerbated ER stress, neuroinflammation, and neuronal apoptosis in brain tissues and neuronal cells. ALKBH5 inhibited STAT5 mRNA stability and expression in an m6A-YTHDF1-dependent manner. STAT5 promoted ER stress by activating the PERK/eIF2/CHOP signaling pathway. Furthermore, STAT5 knockdown reversed the effects of ALKBH5 knockdown on OGD/R-induced ER stress and neuroinflammation in HT22 cells. CONCLUSION: ALKBH5 knockdown exacerbated ischemic stroke by increasing ER stress-dependent neuroinflammation and neuronal apoptosis via the STAT5/PERK/EIF2α/CHOP signaling pathway in an m6A-YTHDF1-dependent manner.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Doenças Neuroinflamatórias , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/patologia , Transdução de Sinais , Estresse do Retículo Endoplasmático , Apoptose
15.
J Ethnopharmacol ; 321: 117418, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979814

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke (IS) is one of the most lethal diseases with the insufficient pharmacology therapeutic approach. Sanwujiao granule (SW) is widely used for IS in China with little known about its underlying mechanism. AIM OF THE STUDY: To investigate the characteristics of therapeutic effects and potential mechanisms of SW against IS. MATERIALS AND METHODS: The fingerprint of SW was applied by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Three different drug treatment strategies, including prophylactic administration, early administration and delayed administration, were applied in rats' permanent middle cerebral occlusion (pMCAO) model. The Garcia neurological deficit test, adhesive removal test, rotarod test, TTC and TUNEL staining were performed to evaluate the pathological changes. The transcriptomic analysis was used to predict the potential mechanism of SW. The vascular deficiency model of Tg(kdrl:eGFP) zebrafish larvae and oxygen-glucose deprivation model on bEnd.3 cells were used to verify SW's pharmacological effect. qRT-PCR, immunofluorescent staining and Western Blot were applied to detect the expression of genes and proteins. The network pharmacology approach was applied to discover the potential bioactive compounds in SW that contribute to its pharmacological effect. RESULTS: SW early and delayed administration attenuated cerebral infarction, neurological deficit and cell apoptosis. The transcriptomic analysis revealed that SW activated angiogenesis-associated biological processes specifically by early administration. CD31 immunofluorescent staining further confirmed the microvessel intensity in peri-infarct regions was significantly elevated after SW early treatment. Additionally, on the vascular deficiency model of zebrafish larvae, SW showed the angiogenesis effect. Next, the cell migration and tube formation were also observed in the bEnd.3 cells with the oxygen-glucose deprivation induced cell injury. It's worth noting that both mRNA and protein levels of angiogenesis factor, insulin-like growth factor 1, were significantly elevated in the pMCAO rats' brains treated with SW. The network pharmacology approach was applied and chasmanine, karacoline, talatisamine, etc. were probably the main active compounds of SW in IS treatment as they affected the angiogenesis-associated targets. CONCLUSIONS: These results demonstrate that SW plays a critical role in anti-IS via promoting angiogenesis through early administration, indicating that SW is a candidate herbal complex for further investigation in treating IS in the clinical.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Medicina Tradicional Chinesa , Peixe-Zebra , Ratos Sprague-Dawley , Transdução de Sinais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais , Glucose/farmacologia , Oxigênio/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Infarto da Artéria Cerebral Média/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
16.
Stem Cells Transl Med ; 13(2): 177-190, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38016184

RESUMO

Stroke is a leading cause of death in the US and around the world but with limited treatment options. Survivors often present with long-term cognitive and neurological deficits. Stem cell-based therapy has emerged as a potential treatment for stroke. While stem cell transplantation in stroke has reached clinical trials, mostly safety outcomes have been reported with efficacy readouts warranting more studies. In an effort to optimize the stem cell regimen for stroke, here we conducted vis-a-vis comparison of different routes of transplantation, namely, intracerebral, intraarterial, and intranasal delivery of expanded human CD34 + stem cells, called ProtheraCytes, in the established stroke model of transient middle cerebral artery occlusion (MCAO) using adult Sprague-Dawley rats. After adjusting for the dose and subacute timing of cell delivery, animals were randomly assigned to receive either ProtheraCytes or vehicle. Motor and neurological assays from days 7 to 28 post-stroke revealed significant functional recovery across all 3 delivery routes of ProtheraCytes compared to vehicle-treated stroke rats. Additionally, ProtheraCytes-transplanted stroke rats displayed significantly reduced infarct size and cell loss in the peri-infarct area coupled with enhanced neurogenesis and angiogenesis compared to vehicle-treated stroke rats. These results highlight the safety and efficacy of transplanting ProtheraCytes, including via the minimally invasive intranasal route, in conferring robust and stable behavioral and histological positive outcomes in experimental stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/patologia , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/patologia , Células-Tronco/patologia , Neurogênese , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Recuperação de Função Fisiológica
17.
Chem Biol Drug Des ; 103(1): e14354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743322

RESUMO

Jasminoidin (JAS) can alleviate ischemic stroke (IS) injury, but its molecular mechanism remains undefined. The polarization of microglia affects IS process. This research is powered to probe whether the molecular mechanism of JAS for IS treatment is coupled with microglia polarization. IS modeling in mice was accomplished by middle cerebral artery occlusion (MCAO) and model mice were injected with 25 and 50 mg/mL JAS, followed by determination of infarct volume, brain water content, and histological changes in mouse brains. The microglia modeling was performed by 1-h oxygen-glucose deprivation and 24-h reoxygenation. Oxygen-glucose deprivation/reoxygenation (OGD/R)-induced microglia were treated with JAS and transfected with Per-Arnt-Sim kinase (PASK)-overexpressing plasmid, subsequent to which cell viability and lactate dehydrogenase (LDH) level were determined. The mRNA or protein expressions of examined genes in microglia and brain tissues were detected by quantitative real-time polymerase chain reaction or western blot. MCAO-induced massive infarction, edema, and injury in mouse brain tissues, upregulated interleukin-1 beta (IL-1ß), FcγRIIB (CD32), tumor necrosis factor alpha (TNF-α), PASK, p-eukaryotic elongation factor 1A1 (EEF1A1), and p-EEF1A1/EEF1A1 levels, but downregulated mannose receptor 1 (CD206), arginase-1 (Arg-1) and interleukin-10 (IL-10), and EEF1A1 expressions, which was reversed by JAS. OGD/R treatment decreased microglial viability as well as expressions of CD206, Arg-1, IL-10, and EEF1A1, yet increased cytotoxicity and levels of IL-1ß, CD32, TNF-α, PASK, p-EEF1A1, and p-EEF1A1/EEF1A1, which was reversed by JAS. PASK overexpression reversed the effects of JAS on microglia. JAS reduces IS injury by regulating microglia polarization via PASK-EEF1A1 axis.


Assuntos
Isquemia Encefálica , Iridoides , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Animais , Microglia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Oxigênio/metabolismo , Glucose/farmacologia
18.
Inflamm Res ; 73(1): 131-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091015

RESUMO

OBJECTIVE: Proinflammatory necroptosis is the main pathological mechanism of ischemic stroke. Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffolding protein that exerts anti-inflammatory effects in most central nervous system diseases. However, the relationship between Homer1 and proinflammatory necroptosis in ischemic stroke remains unclear. AIM: This study aimed to investigate the role of Homer1 in ischemia-induced necroptosis. METHODS: C57BL/6 mice were used to establish a model of permanent middle cerebral artery occlusion model (pMCAO). Homer1 knockdown mice were generated using adeno-associated virus (AAV) infection to explore the role of Homer1 and its impact on necroptosis in pMCAO. Finally, Homer1 protein was stereotaxically injected into the ischemic cortex of Homer1flox/flox/Nestin-Cre +/- mice, and the efficacy of Homer1 was investigated using behavioral assays and molecular biological assays to explore potential mechanisms. RESULTS: Homer1 expression peaked at 8 h in the ischemic penumbral cortex after pMCAO and colocalized with neurons. Homer1 knockdown promoted neuronal death by enhancing necroptotic signaling pathways and aggravating ischemic brain damage in mice. Furthermore, the knockdown of Homer1 enhanced the expression of proinflammatory cytokines. Moreover, injection of Homer1 protein reduced necroptosis-induced brain injury inhibited the expression of proinflammatory factors, and ameliorated the outcomes in the Homer1flox/flox/Nestin-Cre+/- mice after pMCAO. CONCLUSIONS: Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. These data suggested that Homer1 is a novel regulator of neuronal death and neuroinflammation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Nestina/metabolismo , Nestina/farmacologia , Doenças Neuroinflamatórias , Necroptose , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/farmacologia
19.
J Cereb Blood Flow Metab ; 44(1): 6-18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37503862

RESUMO

Ischemic stroke occurs abruptly causing sudden neurologic deficits, and therefore, very little is known about hemodynamic perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were analyzed brain-wide and continuously at high spatiotemporal resolution (100 µm, 2 Hz) until 70mins after stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries (CCAo + MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the ischemic core. The severity and location of the ischemia were variable within groups. On average, the severity of the ischemia was in good agreement with the lesion volume (24 hrs after stroke) for MCAo group, while larger for the CCAo + MCAo model. For both groups, we observed that infarcts extended to initially non-ischemic regions located rostrally to the ischemic core. These regions strongly colocalize with the origin of transient hemodynamic events associated with spreading depolarizations.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Isquemia Encefálica/patologia , AVC Isquêmico/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Isquemia/patologia , Ultrassonografia , Hemodinâmica , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/patologia
20.
J Ethnopharmacol ; 322: 117672, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159826

RESUMO

AIM OF THE STUDY: Naoxinqing (NXQ) tablets are derived from persimmon leaves and are widely used in China for promoting blood circulation and removing blood stasis in China. We aimed to explore whether NXQ has the therapeutic effect on ischemic stroke and explored its possible mechanism. MATERIALS AND METHODS: The cerebral artery occlusion/reperfusion (MCAO/R) surgery was used to establish the cerebral ischemic/reperfusion rat model. NXQ (60 mg/kg and 120 mg/kg) were administered orally. The TTC staining, whole brain water content, histopathology staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA) and Western blot analyses were performed to determine the therapeutical effect of NXQ on MCAO/R rats. RESULTS: The study demonstrated that NXQ reduced the cerebral infarction volumes and neurologic deficits in MCAO/R rats. The neuroprotective effects of NXQ were accompanied by inhibited oxidative stress and inflammation. The nerve regeneration effects of NXQ were related to regulating the AMPKα/NAMPT/SIRT1/PGC-1α pathway. CONCLUSION: In summary, our results revealed that NXQ had a significant protective effect on cerebral ischemia-reperfusion injury in rats. This study broadens the therapeutic scope of NXQ tablets and provides new neuroprotective mechanisms of NXQ as an anti-stroke therapeutic agent.


Assuntos
Isquemia Encefálica , Doenças Metabólicas , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Sirtuína 1/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo , Isquemia Encefálica/metabolismo , Doenças Metabólicas/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...